(k−1)x2+8x+k+5>0 ∀ x∈R,
When k=1, we get
8x+6>0⇒x>−34
Which is not valid for all x∈R
Now,
k−1>0 and D<0
Now,
k−1>0⇒k>1⋯(1)
D<0
⇒64−4(k−1)(k+5)<0⇒16−(k2+4k−5)<0⇒−k2−4k+21<0⇒k2+4k−21>0⇒(k+7)(k−3)>0⇒k∈(−∞,−7)∪(3,∞)⋯(2)
From equation (1) and (2), we get
k∈(3,∞)
Hence, the least integral value of k is 4.