(k−2)x2+8x+k+4>sin−1(sin12)+cos−1(cos12)
Now,
sin−1(sin12)=sin−1(sin(4π+(12−4π)))=sin−1(sin(12−4π))=12−4π
Similarly,
cos−1(cos 12)=cos−1(cos(4π−(4π−12)))=cos−1(cos(4π−12))=4π−12
So,
(k−2)x2+8x+k+4>0
This is possible when
D<0 and k−2>0
⇒64−4(k−2)(k+4)<0⇒k2+2k−24>0⇒(k+6)(k−4)>0⇒k∈(−∞,−6)∪(4,∞)
And
k>2k∈(4,∞)
∴ The least integral value of k is 5