Visualisation of Trigonometric Ratios Using a Unit Circle
The least per...
Question
The least perimeter of an isoceles triangle circumscribed about a circle of radius ′r′ is kr√3.Then ′k′ is
Open in App
Solution
Let ∠QAO=θ ⇒AQ=rcotθ ⇒AO=rcosec θ ∴tanθ=xAO+ON ⇒x=(rcosec θ+r)tanθ⋯(i)
As, BQ=BN,CN=CP and AP=AQ(tangents to a circle from same point)
So, Perimeter =P=4x+2AQ ⇒P=4(rtanθ)(cosec θ+1)+2rcotθ ⇒P=4r(secθ+tanθ)+2rcotθ⋯(ii) ⇒dPdθ=4r(secθ⋅tanθ+sec2θ)−2rcosec2θ ⇒dPdθ=2r⋅2sin3θ+3sin2θ−1sin2θ⋅cos2θ {∵θ is a variable} ⇒dPdθ=0 ⇒2sin3θ+3sin2θ−1=0 ⇒(sinθ+1)2(2sinθ−1)=0 ⇒sinθ=12 ⇒θ=π6
For θ=π6,f′(θ) changes sign from negative to positive, so a local minima. ⇒at θ=π6 Perimeter is minimum ⇒PMinimum=6√3r from (ii)