The least positive integer n such that (2i1+i)n is a positive integer, is
8
Let z=(2i1+i)n⇒ z=2i1+i×1−i1−i⇒ z=2i(1−i)1−i2⇒ z=2i(1−i)1+1 [∵ i2=−1]⇒ z=2i(1−i)2⇒ z=i−i2⇒ z=i+1Now, zn=(1+i)nFor n=2,z2=(1+i)2=1+i2+2i=1−1+2i=2i ...(1)
Since this is not a positive integer,
For n =4,z4=(1+i)4=[(1+i)2]2=(2i)2 [Using (1)]=4i2=−4 ...(2)
This is a negative integer,
For n = 8,
z8=(1+i)8=[(1+i)4]2=(−4)2 [Using (2)]=16
This is a positive integer,
This, z=(2i1+i)n is positive for n = 8
Therefore, 8 is the least positive integer such that (2i1+i)n is a positive integer.