Simplifying n−1C5+n−1C6<nC7
(n−1)!5!(n−6)!+(n−1)!6!(n−7)!=n!7!(n−7)!
6(n−1)!+(n−6)(n−1)!6!(n−6)(n−7)!=n!7!(n−7)!
(n−1)!(6+n−6)6!(n−6)(n−7)!=n!7!(n−7)!
1n−6=17
n−6=7
n=13
Therefore, the value of n−7 is,
n−7=13−7
=6