The least positive integers n such that 1−23−232−..−23n−1<1100 is
We have,
1−23−232−.....−23n−1<1100
Now,
1−2(13+132+.....+13n−1)<1100
It is G.P.
Then,
First term a=13
Common ratio r=13213=13
So,
Then, using formula
Ifr<1
Sn=a(1−rn)(1−r)
So,
Sn=13(1−(13)n−1)1−13
=13(1−13n−1)23
=12(1−13n−1)
So,
1−2×12(1−13n−1)<1100
⇒1−(1−13n−1)<1100
⇒1−1+13n−1<1100
⇒13n−1<1100
⇒3n−1>100
⇒3n3>100
⇒3n>100×3
⇒3n>300
⇒3n<34
On comparing that,
n=4
Hence, this is the
answer.