The correct option is C 4
Let f(x)=x2−2(a−1)x+(2a+1)=0
Then, f(x)=0 will have both roots positive, if
(i) D≥0 (ii) Sum of the roots > 0 and (iii) f(0)>0
Now, D≥0⇒4(a−1)2−4(2a+1)≥0⇒ a2−4a≥0⇒a≤0 or a≥4 …(i)
Sum of the roots > 0
⇒ 2(a−1)>0⇒a>1 …(ii)
and f(0)>0⇒ 2(a−1)⇒a>−12 …(iii)
From (i), (ii) and (iii) we ge a≥4,
Hence, the least integral value of a is 4.