The correct option is
B 21−1√2we know that,
A.M.≥G.M.
⟹a+b2=√ab
let a=2sinx and b=2cosx
therefore, ⟹2sinx+2cosx2≥√2sinx∗2cosx
⟹2sinx+2cosx2≥√2sinx+cosx
⟹2sinx+2cosx≥2∗212(sinx+cosx)
⟹2sinx+2cosx≥21+12(sinx+cosx)
21+12(sinx+cosx) to be least sinx+cosx should be minimum
Therefore, finding the derivative and equating zero.
ddxsinx+cosx=0⟹cosx−sinx=0
⟹cosx=sinx⟹tanx=1
⟹x=π4,5π4,...
on substituting we get min at 5π4
therefore, 2sinx+2cosx≥21+12(sin(5π4)+cos(5π4))
⟹2sinx+2cosx≥21+12(−1√2−1√2)
⟹2sinx+2cosx≥21+12(−2√2)
⟹2sinx+2cosx≥21−1√2
therefore the least value of 2sinx+2cosx is 21−1√2