The least value of 'a' for which 4sin x+11−sin x=a has at least one solution in the interval (0,π/2) is
9
f(x)=4sin x+11−sin x=af′(x)=−4 cos xsin2 x+cos x(1−sin x)2=cos x(1(1−sin x)2−4sin2 x)∴f′(x)=0⇒1(1−sin x)2−4sin2 x=0 as cos x≠0 in(0,π2)
This gives sin x=23
Substituting Eq. (i), we get
a=9