The least value of a for which the equation 4sinx+11−sinx=a has at least one solution in the interval (0,π/2) is
Given:(4sinx+11−sinx)
Differentiate the given equation with respect to x.
ddx(4sinx+11−sinx)=dadx
dadx=[−4sin2x+1(1−sinx)2]cosx
Equate the first derivative of the function to 0
dadx=0
[−4sin2x+1(1−sinx)2]cosx=0
−4sin2x+1(1−sinx)2=0
4sin2x=1(1−sinx)2
(2(1−sinx))2=sin2x
2(1−sinx)=sinx
2−2sinx=sinx
sinx=23
Double differentiate the given function with respect to x
d2adx2=(−4sin2x+1(1−sinx)2)(−sinx)+cosx(8sin2x+2(1−sinx)cosx)
Substitute the critical value in double derivative and find out whether it is less than or greater than 0.
d2adx2⩾0
Since double derivative is greater than 0.
Substitute the value in the given function to find the value of minima.
a=4sinx+11−sinx
=42/3+11−2/3
=6+3=9