The least value of cos2θ−6sinθ⋅cosθ+3sin2θ+2 is
=cos2θ−6sinθcosθ+3sin2θ+2
=−6sinθcosθ+2sin2θ+3
f(x)=−6sinθcosθ+2sin2θ+3
f′(x)=−6(cos2θ−sin2θ)+4sinθcosθ=0
cos2θ=sin2θ3
tan2θ=3
⇒sin2θ=3√10
⇒cos2θ=1√10
these are the minimum values
putting it back in f(x),
f(x)=−9−1√10+4=4−√10