The least value of cos2θ−6sinθcosθ+3sin2θ+2 is
cos2θ−6 sinθ cosθ+3 sin2θ+2=(cos2θ+sin2θ)−6 sinθ cosθ+2 sin2θ+2=2 sin2θ−3 sin 2θ+3=1−cos 2θ−3 sin 2θ+3=4−(cos2θ+3 sin2θ)∴ Least value =c−√a2+b2=4−√10