The least value of
(x+100)2+(x+99)2+⋯⋯+(x+1)2+x2+(x−1)2+(x−2)2+….+(x−100)2 is
f(x)=(x+100)2+(x+99)2+⋯⋯+(x+1)2+x2+(x−1)2+(x−2)2+....+(x−100)2
f′(x)=2(x+100)+2(x+99)+⋯⋯+2(x+1)+2x+2(x−1)+2(x−2)+....+2(x−100)=0
⇒x=0
Since, f′′(0)>0
Therefore, f(x) is minimum at x=0
Therefore, f(0)=2(1+22+32+...+1002)=2×100×(100+1)×((2×100)+1)6=676700
where sum of square of first n numbers=n(n+1)(2n+1)6