The least value of n for which (n−2)2+8x+n+4>sin−1(sin12)+cos−1(cos12) ∀x ϵ R and n ϵ N is
5
sin−1(sin12)+cos−1(cos12)
=sin−1(sin(4π−(4π−12)))+cos−1(cos(4π−(4π−12)))
=−(4π−12)+(4π−12)=0
So that (n−2)2+8x+n+4>0 ∀ x ϵ R
⇒n−2>0n⇒n≥3
And 82−4(n−2)(n+4)<0
Or n2+2n−24>0
n2+6n−4n−24>0
(n+6)−4(n+6)>0
(n+6)(n−4)>0⇒n<−6 or n>4⇒n=5 as n ϵ N