The least value of the function f(x)=ax+bx(a>0,b>0,x>0) is .
Open in App
Solution
Given: f(x)=ax+bx ⇒f′(x)=a−bx2
For critical points, f′(x)=0 ⇒a−bx2=0 ⇒x=√ba∵x>0 f′′(x)=2bx3 ⇒f′′(√ba)=2b×a32b32>0 (∵a>0,b>0)
Hence, x=√ba is a point of minima
Min. value of f(x)= f(√ba)=a√ba+b√ab=2√ab
Hence, the least value of f(x)is 2√ab.