wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The least value of the function f(x) = x3-18x2+96x in the interval [0,9] is
(a) 126
(b) 135
(c) 160
(d) 0

Open in App
Solution

(d) 0Given: fx= x3-18x2+96xf'x=3x2-36x+96For a local maxima or a local minima, we must have f'x=03x2-36x+96=0x2-12x+32=0x-4x-8=0x=4, 8So,f8=83-1882+968=512-1152+768=128f4=43-1842+964=64-288+384=160f0=03-1802+960=0f9=93-1892+969=729-1458+864=135Hence, 0 is the minimum value in the range 0, 9.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Ascending and Descending Order and Shifting Digits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon