The left end of a copper rod (length = 20 cm , area of cross section = 0.20 cm2) is maintained at 20∘C and the rightend is maintained at 80∘C. Neglecting any loss of heat through radiation, find (a) the temperature at a point 11 cm from the left end and (b) the heat current through the rod. Thermal conductivity of copper = 385Wm−1∘C−1.
l = 20 cm =20×10−2m,
A = 0.2cm2=0.2×10−4m2
T1=80∘C T2=20∘C
k = 385
(a) Qt=kA(T1−T2)l
= 385×0.2×10−4(80−20)20×10−2
= 385×10−5×6020×10−2
= 385×6×10−4×10
=2310×10−3=2.31 J/s.
(b) Let the temperature of the 1 point at 11 cm be T.
ΔTl=QtkA
⇒ΔTl=2.31385×0.2×10−4
⇒T−2011×10−2=2.31385×0.2×104
⇒T−20=2.31×104385×0.2×11×10−2
= 33
⇒T=33+20=53∘C