The length and breadth of the rectangle park are in the ratio 5 : 4 and its area is 2880
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
m2, find the cost of fencing the park at the rate of ₹5 per metre.
Let the length and breadth of the rectangle as per the given ratio be 5x and 4x.
We know, area of rectangle = length x breadth
So, the area of the rectangular park
= 5
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
x x 4
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
x = 20
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
x2
According to the question,
Area of the rectangular park is 2880
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
m2
So, 20
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
x2 = 2880
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
x2 = 144
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
x = 12
So, 5
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
x = 5 × 12 = 60
4
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
x = 4 × 12 = 48
So, the perimeter of the park
= 2 (length + breadth)
= 2 (60 + 48)
= 2 × 108
= 216 cm
For 1 m, the cost of fencing = ₹5
For 216 m, the cost of fencing
= ₹5 x 216
= ₹1080