The correct option is A 21
Let A=(−1,3,9)
Given line is x−135=y+8−8=z−311=t
Any point P on the line is (13+5t,−8−8t,31+t)
Let P be the foot of the perpendicular of A
⇒ D.r's of AP=(14+5t,−11−8t,22+t)
AP is perpendicular to given line.
⇒a1a2+b1b2+c1c2=0
⇒5(14+5t)−8(−11−8t)+1(22+t)
⇒70+25t+88+64t+22+t=0
⇒180+90t=0
⇒t=−2
So, we have P=(3,8,29) andAP=(4,5,20)
Length of AP=√(4)2+(5)2+(20)2
Hence, length of perpendicular =|AP|=21