The correct option is
D b2c=4a3Parabola P:y²=4ax−−(1)
Vertex =O(0,0) Focus: F(a,0)
Let the Focal chord L be (y−0)=m(x−a)
So y=mx−ma−−(2)\
Given b = Distance of O from L.
=>b²=m²a²/(1+m²)−−−(3)
Find intersections A(x1,y1),B(x2,y2) of P & L:
Eliminate y from (1) & (2):
m²x²−2amx+m²a²=4ax
m²x²−2a(m+2)x+m²a²=0−−−(3)
x1,x2 are the roots, x1+x2=2a(m+2)/m²andx1x2=a²−−(4)
Eliminate x from (1) & (2):
y=m(y²/4a)−ma
my²−4ay−4a²m=0−−(5)
y1,y2 are the roots, y1+y2=4a/mandy1y2=−4a²−−−(6)
Now Length of focal chord =c=AB
c²=(x1−x2)²+(y1−y2)²
=(x1+x2)²−4x1x2+(y1+y2)²−4y1y2
=4a²(m⁴+4+4m²)/m⁴−4a²+16a²/m²+16a²
=16a²(m²+1)²/m⁴
=16a²(a²/b²)²−−−using(3)
=>b²c=4|a³| , Modulus as "a"can be +ve or −ve.
Hence, the option D is the correct answer.