wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The length of a pair of co-axial solenoid is 75 cm. The given table lists some of the values related to the co-axial solenoid.
Number of turns (n) Area of cross-section (A)
Outer solenoid 50 per cm 65 cm2
Inner solenoid 100 per cm 30 cm2
What is the mutual inductance of the co-axial solenoid?

Open in App
Solution

Dear Student,

Suppose a current i is passed in a circuit and it is changed with a rate di/dt. The induced emf e produced in the circuit is directly proportional to the rate of change of current. Thus,
e alpha fraction numerator d i over denominator d t end fraction T h e r e f o r e comma e equals minus L fraction numerator d i over denominator d t end fraction minus s i g n h e r e i s r e f l e c t i o n o f L e n z apostrophe s L a w. L minus S e l f I n d u c t i o n o f t h e c i r c u i t L equals open vertical bar fraction numerator negative e over denominator begin display style bevelled fraction numerator d i over denominator d t end fraction end style end fraction close vertical bar

Here, self inductance of the coil having length L, Area of cross section A1 and number of turns per unit length is n1. is,
L subscript 1 equals fraction numerator N Ï• subscript B over denominator i end fraction equals N over i open parentheses fraction numerator mu subscript 0 N A subscript 1 i over denominator L end fraction close parentheses N minus n o. o f t u r n s equals n subscript 1 L L subscript 1 equals fraction numerator mu subscript 0 N squared A subscript 1 over denominator L end fraction equals mu subscript 0 n subscript 1 squared L A subscript 1 S i m i l a r l y comma L subscript 2 equals mu subscript 0 n subscript 2 squared L A subscript 2

Therefore, Two coils will be having the self inductance as L1 and L2 respectively.
If M is the mutual inductance of the coils,
M subscript 12 equals fraction numerator N subscript 2 phi subscript B subscript 2 end subscript over denominator i subscript 1 end fraction a n d M subscript 21 equals fraction numerator N subscript 1 phi subscript B subscript 1 end subscript over denominator i subscript 2 end fraction W e k n o w comma L subscript 1 equals fraction numerator N subscript 1 phi subscript B subscript 1 end subscript over denominator i subscript 1 end fraction a n d L subscript 2 equals fraction numerator N subscript 2 phi subscript B subscript 2 end subscript over denominator i subscript 2 end fraction

If all the flux of coil 2 links coil 1 and vice-versa then,
phi subscript B subscript 1 end subscript equals phi subscript B subscript 2 end subscript M subscript 12 equals M subscript 21 equals M H e n c e comma w e h a v e comma M subscript 12 M subscript 21 equals M squared equals fraction numerator N subscript 1 N subscript 2 phi subscript B subscript 1 end subscript phi subscript B subscript 2 end subscript over denominator i subscript 1 i subscript 1 end fraction equals L subscript 1 L subscript 2 T h e r e f o r e comma M subscript m a x end subscript equals square root of L subscript 1 L subscript 2 end root M less or equal than square root of L subscript 1 L subscript 2 end root
So L1=502×75×65=1.2×107similarly L2=1002×30×75=2.2×107mutual inductance =L1L2=1.2×107×2.2×107=1.62×107 abHenry =1.62×107 ×10-9=0.0162HenryRegards


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Relative Strength of Magnetic Field Inferred from Magnetic Field Lines
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon