The correct option is B 203
(5x−10)2+(5y+15)2=(3x−4y+7)24
⇒(x−2)2+(y+3)2=(123x−4y−75)2
⇒√(x−2)2+(y+3)2=12|3x−4y−7|5
It is an ellipse, whose focus is (2, -3),
Directrix is 3x−4y+7=0,
Eccentricity 12.
Length of perpendicular from the focus to the directrix is
|3×2−4(−3)+7|5=5
⇒ae−ae=5
⇒2a−a2=5⇒a=103
So, the length of the major axis is 203.