The correct option is A √OS⋅SP
Focus of the parabola is S(a,0)
equation of parabolay2=4ax
let, co-ordinates of P≡(at2,2at)
Equation of tangent at P
yt=x+at2
Let perpendicular length is SQ from (a,0) to the tangent
SQ=|a+at2|√t2+1
SQ=|a√1+t2|
OS=a
SP=√a2(1−t2)2+4a2t2
⇒SP=a(t2+1)
so, OS⋅SP=a⋅a(t2+1)=a2(t2+1)
SQ=√OS⋅SP