The length of subtangent to the curve x2+xy+y2=7 at the point (1,−3) is
We have,
x2+xy+y2=7
On differentiating w.r.t x, we get
2x+xdydx+y+2ydydx=0
Since, the given point (1,−3)
Therefore,
2×1+dydx−3+2×−3dydx=0
2+dydx−3−6dydx=0
−1−5dydx=0
dydx=−15
We know that the length of the sub-tangent
=∣∣ ∣ ∣ ∣∣ydydx∣∣ ∣ ∣ ∣∣
=∣∣ ∣ ∣ ∣∣−3−15∣∣ ∣ ∣ ∣∣
=15
Hence, this is the answer.