The length of the chord intercepted by the x2+y2=r2 on the line xa+yb=1 is-
xa+yb=1 and x2+y2=r2 y=−bxa+b substitute this in equation of circle we get x2+(−bxa+b)2=r2 x2(1+b2a2)−2b2xa+b2−r2=0 ⇒ x=2b2a±√4b4a2−4b2−4b4a2+4r2+4r2b2a22(1+b2a2) by Sridharacharya formula On simplifying we get x=b2a±a√r2(a2+b2)−a2b2a2+b2 Now xa+yb=1 Hence y=a2b±√r2(a2+b2)−a2b2−(a2+b2) Now length=√(x2−x1)2+(y2−y1)2 On applying this formula we get l2=4(a2+b2)[r2(a2+b2)−a2b2](a2+b2)2 Hence l=2√[r2(a2+b2)−a2b2](a2+b2) |