The length of the diagonal AC of a rhombus ABCD is 20 cm and one of its angle measures 120∘, then the length of the other diagonal BD is
20√3 cm
ABCD is a rhombus with AC=20 cm
∠ A=60∘, ∠ B=120∘
Here AO=12 AC=12×20=10 cm (diagonals of a rhombus bisect each other at right angles)
∠ AOB=90∘
In triangle AOB, the angles are 30∘, 60∘, 90∘
So, the corresponding sides can be calculated as
⇒sin(30):sin(60):sin(90)
⇒12:√32:1
⇒1:√3:2
30∘60∘90∘x:x√3:2x↓↓↓BOAOAB↓↓↓ 10√3 cm10 cm 20√3 cm
BO=10√3 cm
BD=2×BO
BD=2×10√3=20√3 cm