The length of the latus rectum of the conic 5r=2+3cosθ+4sinθ is
Convert into Cartesian coordinates by using x=rcosθ,y=rsinθ,r=√x2+y2
5=2r+3rcosθ+4rsinθ
⇒5=2√x2+y2+3x+4y
⇒3x+4y−5=−2√x2+y2
⇒x2+y2=254(3x+4y−55)2
Hence, it's a conic with eccentricity=52, focus(0,0) and directrix 3x+4y−5=0
Focal parameter = perpendicular distance between focus and directrix = ∣∣∣−55∣∣∣=1
Latus rectum =2× focal parameter × eccentricity
=2×1×52=5