The correct option is
A 6√3Let PQ be the normal chord to the parabola y2=4x where a=1
Let (at21,2at1) and (at22,2at2) be the coordinates of P and Q respectively.
i.e., coordinates of P=(t21,2t1)
and coordinates of Q=(t22,2t2)
Equation of normal at point P is
y−2t1=−2t12(x−t21)
⇒y−2t1=−t1(x−t21) …………(1)
Since Q is a point at the normal, substituting y=2t2 and x=t22
we have,
2t2−2t1=−t1(t22−t21)
⇒2(t2−t1)=−t1(t2+t1)(t2−t1)
⇒2=−t1(t2+t1)……… (2)
It is given that the normal chord subtends a right angle at the vertex A(0,0) i.e., PA⊥AQ
∴ (slope of PA)(slope of AQ)=−1
((2t1−0)(t21−0))(2t2−0t22−0)=−1
⇒2t1t21⋅2t2t22=−1
⇒4t1t2=−1
⇒t1t2=−4 ……(2)
From (2),
−t1(t2+t1)=2
⇒−t1t2−t21=2
⇒4−t21=2 [from (3)]
⇒t21=2
⇒t1=√2
Substituting value of t1 in (3) we have
t2=−4√2
t2=−4√22=−2√2
∴ coordinates of P=((√2)2,2(√2))=(2,2√2)
Coordinates of Q=((−2√2)2,2(−2√2))=(−8,−4√2)
∴ Length of normal chord PQ=√(8−2)2+(−4√2−2√2)2
=√62+(−6√2)2
=√36+72
=√108
=6√3.