The correct option is
D √23Let A(5,−1,4) and B(4,−1,3) be a line
then →AB=(4−5)^i+(−1+1)^j+(3−4)^k
=−^i−^j
|AB|=√12+12=√2 units
Given:Equation of the plane is x+y+z=7
Normal vector→n=^i+^j+^k
Equation of plane is →r.^n=d
(x^i+y^j+z^k).(^i+^j+^k)=7
|n|=√1+1+1=√3
Length of Projection AB along the plane is P=|AB|cos(90−θ)=|AB|sinθ
Here cosθ=→AB.→n|AB|.|→n|
=(−^i−^j).(^i+^j+^k)(√2).(√3)
=−1−1+0√6=−2√6×√2√2=2√22√3=√2√3
⇒sinθ=√1−cos2θ=
⎷1−(√2√3)2=√1−23=1√3
Now,P=|AB|sinθ=√2×1√3=√23
∴Length of projection of line segment on the plane is √23