The length of the side of a rhombus is 10 units and its diagonals differ by 4. The area of the rhombus is
Let d1 and d2 be the lengths of the diagonals of the rhombus.
Then, d1+d2=4
In a rhombus, the diagonals bisect each other at 900
Referring the diagram, if PR =d1, SQ =d2, then OP =d12, OQ =d22
Since, triangle POQ is a right angled triangle,
PQ2=OP2+OQ2
102=(d12)2+(d22)2
100=d124+d224
400=d12+d22
400=d1+d12−2d1d2
400=42−2d1d2
2d1d2=384
d1d2=192
Area of a rhombus $= \dfrac { 1 }{2 } \times (diagonal 1 \times diagonal 2) =\dfrac{1}{2}{ d }_{ 1 }{ d }_{ 2 }=\dfrac { 1 }{ 2 } \times 192 = 96$