Let A(x1,y1) and B(x2,y2) are the point of intersection of line x−3y=1 and hyperbola
x2−4y2=1
∵x−3y=1
⇒x=3y+1 …(1)
Putting value of x in equation of hyperbola
⇒(3y+1)2−4y2=1
⇒9y2+6y+1−4y2=1
⇒5y2+6y=0
⇒y(5y+6)=0
⇒y=0,−65
∴y1=0,y2=−65
From equation (1)
When y1=0⇒x1=1
And when y2=−65⇒x2=−135
∴ Point of intersection A(1,0) and B(−135,−65)
Intercepted length
AB=√((−135−1)2+(−65−0)2
⇒AB=√32425+3625
⇒AB=√36025
Hence, option (C) is correct.