The length of the straight line x−3y=1 intercepted by the hyperbola x2−4y2=1 is
6√25
The point of intersection of x−3y=1
and the hyperbola x2−14y2=1 is
calculated in the following way :
(1+3y)2−4y2=1
⇒1+6y+9y2−4y2=1
⇒5y2+6y=0
⇒y=0 or y=−65
If Y=0 then x=1
If y=−65 then x=1+3×(−65)=−135
So,the points are (1,0) and (−135,−65)
∴Length=√(1+135)2+(0+65)2=6√25