The length of the tangent to the curve x=a(θ+sinθ),y=a(1−cosθ) at θ points is
Given, x=a(θ+sinθ),y=a(1−cosθ)
⇒dxdθ=a(1+cosθ)=2acos2θ2,dydθ=asinθ=2asinθ2cosθ2
Thus slope at ′θ′ is, m=dydx=dydθdxdθ=tanθ2
Hence length of tangent at ′θ′ is
=y√1+m2m
=a(1−cosθ)√1+tan2θ2tanθ2=2asinθ2