The lengths of the sides of a triangle are in the ratio 4 : 5 : 3 and its perimeter is 96 cm. Find its area.
In isosceles ΔABC
AB=AC =13 cm
But perimeter =50 cm
∴ BC=50 -(13+13)cm
=50-26=24 cm
AD⊥BC
∴AD=DC=242=12cm.
In right ΔABD,
AB2=AD2+BD2 (Pythagoras Theorem)
(13)2=AD2+(12)2
⇒169=AD2+144
⇒AD2=169−144
=25=(5)2
∴AD=5cm.
Now area of ΔABC=12 Base × Altitude
=12×BC×AD
=12×24×5=60cm2