The correct option is A 1:2
Let P(h,k) be a point on the circle
15x2+15y2−48x+64y=0
Then the lengths of the tangents from P(h,k) to
5x2+5y2−24x+32y+75=0
5x2+5y2−48x+64y+300=0 are
PT1=√h2+k2−245h+325k+15
and PT2=√h2+k2−485h+645k+60
or PT1=√4815h−6415k−245h+325k+15=√3215k−2415h+15
(Since (h,k) lies on 15x2−15y2−48x+64y=0
∴h2+k2−4815h+6415k=0)
and PT2=√4815h−645k−485h+645k+60
=√−9615h+12815k+60=2√−2415h+3215k+15=2PT1
⇒PT1:PT2=1:2