The correct option is B (83,−19)
Let P(x,y) be the point on the line 2x+3y−5=0 which divides the line joining A(8,−9) and B(2,1) in the ratio k:1.
By section formula,
P(x,y)=([kx2+x1][k+1],[ky2+y1][k+1])
Where (x1,y1)=(8,−9) and (x2,y2)=(2,1)
⇒P(x,y)=[(2k+8)(k+1),(k−9)(k+1)]
Since P(x,y) lies on the line 2x+3y−5=0,we have:
2(2k+8)(k+1)+3(k−9)(k+1)−5=0
⇒(4k+16+3k−27)(k+1)=5
⇒7k−11=5k+5
⇒k=8
Thus, P(x,y)=(83,−19)