Given the line,
3x+2y=24⟶(1)
for A putting x=0 in (1),
2y=24
⇒y=12
∴ coordinates of A=(0,12)
for B putting y=0 in (1),
3y=24
⇒x=8
∴ coordinates of B=(8,0)
Midpoint of AB=(8+02,0+122)=(4,6)
Now, equation of line perpendicular to line (1),
2x−3y=λ
It will pass through (4,6)
so, 2(4)−3(6)=λ
⇒λ=8−18
⇒λ=−10
Equation of the line parallel to X-axis is,
y=constant
it will pass through (0,−1)
⇒−1=constant
⇒y=−1
To get coordinates of C,putting y=−1 in
2x−3y=−10
⇒2x+3=−10
⇒x=−132
Hence, we have C(−132,−1),A(0,12)andB(8,0)
∴ Area of $\triangle ABC
=|−87−4|
=|−91|
=91squareunits