The correct option is
D 91
LettheΔbeABC.
thegivenequationcanbewrittenas
3x24+2y24=1⟹x8+y12=1.
Itisoftheformxa+yb=1⟹a=8&b=12
SothepointofintersectionwithX−axisisA=(a,0)=(8,0)=(x1,y1)
andthatwithY−axisisB=(0,b)=(0,1)=(x2,y2)
.
∴Mid−pointofAB=(8+02,0+122)=(4,6)
Nowequationoftheperpendicularbisrctoroftheline3x+2y=24is
2x−3y=k........(i)whenkisaconstant.Thislinepassesthrough(4,6)
∴substitutingx=4,y=6inequation(i)weget2×4−3×6=k⟹k=10
∴equation(i)becomes2x−3y=10.........(ii).Thislineintersectsy=−1.........(iii)
soeliminatingyfrom(ii)&(iii)wehave
2x−3×(−1)=10⟹x=132,y=−1∴VertexC=(132,−1)=(x3,y3)
∴TheareaoftheΔis
=12{x1(y2−y1)+x2(y3−y1)+x3(y1−y2)}=12{8(12+1)+0+132(0−12)}=91sq.unit
Ans−OptionD