The line x+65=y+103=z+148 is the hypotenuse of an isosceles right angled triangle whose opposite vertex is (7,2,4).Find the equation of the remaining sides.
x−72=y−2−3=z−46
x−73=y−26=z−42
x+65=y+103=z+148=λ(say)
General point on above line is (5λ−6,3λ−10,8λ−14)
Let B≡(5λ−6,3λ−10,8λ−14)
d.r's of line AB are
((5λ−6−7),(3λ−10−2),(8λ−14−4))⇒(5λ−13,3λ−12,8λ−18)
Also d.r.'s of line BC are (5,3,8)
Since angle between AB and BC is π4
⇒cosπ4=|(5λ−13)5+(3λ−12)3+(8λ−18)8|√52+32+82.√(5λ−13)2+(3λ−12)2+(8λ−18)2
⇒1√2=|25λ+9λ+64λ−65−36−144|√98.√(5λ−13)2+(3λ−12)2+(8λ−18)2
Solving above equation, we get λ=3,2
Hence, equation of lines are
x−72=y−2−3=z−46 and x−73=y−26=z−42