The correct option is D 2π−θ
Given line equation xacosθ−ybsinθ=1andequationofellipseasx2a2+y2b2=1
Any point on the ellipse will be as (acosϕ,bsinϕ)
Since line touches ellipse at the point P(acosϕ,bsinϕ)
On substituting Point P on the line equation
⇒acosϕacosθ−bsinϕbsinθ=1
⇒cosϕcosθ−sinϕsinθ=1
⇒cos(θ+ϕ)=cos2π
⇒(θ+ϕ)=2π
⇒ϕ=2π−θ