The correct options are
A PR×PS=23
B PR+PS=RS
C PR+PS=2
Clearly the given line x=y=z meets the plane where
3x=1 or x=13=y=z, i.e. P is (13,13,13). It meets the
sphere x2+y2+z2=1 where 3x2=1=3y2=3z2
∴x=y=z=1√3 or −1√3
∴ R is (1√3,1√3,1√3) and S is (−1√3,−1√3,−1√3).
∴(PR)2=(1√3−13)2(1+1+1)
∴PR=⎛⎝1√3−13⎞⎠√3=(1−1√3)
Similarly, PS=1+1√3 and RS=2√3.√3=2
∴PR+PS=2⇒(a)
∴PR.PS=1−13=23⇒(b)
∴PR+PS=RS⇒(d)