The line drawn through the center of a circle to bisect a chord is perpendicular to the chord. Prove this statement.
Here AP=PB
OA=OB (radius)
OP=OP (common)
⇒△POA≅△POB
⇒∠APO=∠BPO,
But ∠APO+∠BPO=180∘ [∵ linear pair]
⇒2∠APO=90∘
⇒∠APO=∠BPO=90∘