The correct option is A is 1
∫→V.→dr=∫(2xyzdx+x2zdy+x2ydz)
=∫(1,1,1)(0,0,0)d(x2yz)=(x2yz)(1,1,1)(0,0,0)
=1 - 0 = 1
Alternately:
Equation of St. line x−01−0=y−01−0=z−01−0=t(let)
⇒ x = y = z = t so dx = dy = dz = dt and 0≤t≤1
so, ∫c→V.d→r=∫c(2xyzdx+x2zdy+x2ydz)
=∫104t3dt=1