wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The line joining A (bcosα, bsinα) and B (acosβ, asinβ) is produced to the point M (x,y), so that AM and BM are in the ration b:a. Prove that
x+y tan(α+β2)=0

A
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
sin(α+β/2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
sin(αβ/2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D sin(αβ/2)
Given AMBM=ba
M divides AB externally in the ratio b:a
x=bacosβabcosαba and y=basinβabsinαba
xy=cosβcosαsinβsinα
cosβ=1tan2(β/2)1+tan2(β/2), cosα=1tan2(α/2)1+tan2(α/2), sinβ=2tan(β/2)1+tan2(β/2),sinα=2tanα21+tan2α2
xy=1tan2β21+tan2β/21tan2α21+tan2α/22tanβ/21+tan2β/22tanα/21+tan2α/2=1+tan2α2tan2β2tan2α2tan2β21tan2β2+tan2α2+tan2α2tan2β22tanβ2+2tanβ2tan2α22tanα22tanα2tan2β2
xy=2(tan2α2tan2β/2)2(tanβ/2tanα2)(1tanα2tanβ/2)=(tanα2tanβ2)(tanα2+tanβ2)(tanα2tanβ2)(1tanα2tanβ2)
x+ytanα2+tanβ/21tanα2tanβ2=0x+ytan(α+β2)=0 Hence proved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression - Sum of n Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon