(i) Let, R divides PQ in the ratio k:1. Since, R lies on y-axis, therefore, R(0,y)
Using Sectional formula,
R(0,y)=(mx2+nx1m+n,my2+ny1m+n)
Here, m:n=k:1
⇒R(0,y)=(k(3)+1(−4)k+1,k(2)+1(5)k+1) ...(A)
On comparing the coordinates, we get,
⇒0=(k(3)+1(−4)k+1
⇒3k=4
⇒k=43
Hence, R divides PQ in the ratio 4:3.
Therefore, PR:RQ=4:3
(ii) On comparing the y coordination from (A), we get,
⇒y=(k(2)+1(5)k+1)
⇒y=(43(2)+1(5)43+1)
⇒y=8+154+3
∴y=237
Hence, R(0,237)
(iii) Here, PM=5 units, QN=2 units and MN=4+3=7 units
Area of PMNQ=12×(PM+QN)×MN
=12×(5+2)×7