Q divides AB in 2:1
The coordinates of point when (x1,y1) and (x2,y2) are divided in m:n internally is (mx2+nx1m+n,my2+ny1m+n)
Let the coordinates of Q be (h,k)
h=2(−3)+1(1)2+1=−6+13=−53k=2(4)+1(−2)2+1=8−23=2⇒Q(−53,2)
Now P divides AQ in 1:1
Let the coordinates of P be (a,b)
a=1(−53)+1(1)1+1=−53+12=−232=−13b=1(2)+1(−2)1+1=2−22=0⇒P(−13,0)
So, the coordinates of point of trisection are (−13,0) and (−53,2)