The line lx+my=1 meets the ellipse x2a2+y2b2=1 in the points P and Q, then the mid point of chord PQ is, where k=a2l2+b2m2
A
(a2lk,b2mk)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(−a2lk,−b2mk)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(b2lk,a2mk)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(−b2lk,−a2mk)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is D(a2lk,b2mk) x2a2+y2b2=1 Or b2x2+a2y2=a2b2 Now the line lx+my−1 cuts the ellipse at two points. y=1−lxm Substituting in the equation of ellipse gives us b2x2+a2(1−lxm)2=a2b2 m2b2x2+a2(1−lx)2=a2b2m2 m2b2x2+a2[1+l2x2−2lx]=a2b2m2 x2(m2b2+a2l2)−2a2lx+a2−a2b2m2=0 x=2a2l±√4a4l2−4(m2b2+a2l2)(a2−a2b2m2)2(m2b2+a2l2) x=a2l±√a4l2−(m2b2+a2l2)(a2−a2b2m2)(m2b2+a2l2) x=a2l±√a4l2−a2(a2l2+m2b2)(1−m2b2)(m2b2+a2l2) Let the x−coordinate of P and Q be x1,x2, then x1+x2=−BA=2a2la2l2+m2b2 Hence x1+x22=a2la2l2+m2b2 x′=a2la2l2+m2b2 Thus y′=1−lx′m =1−l(a2la2l2+m2b2)m =a2l2+m2b2−a2l2m(a2l2+m2b2) =m2b2m(a2l2+m2b2) =b2ma2l2+m2b2 Hence (x′,y′)=(a2la2l2+m2b2,b2ma2l2+m2b2)