wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The line passing through the points (5,1,a) and (3,b,1) crosses the

Open in App
Solution

(a)x52=y11b=zaa1=μ(say)

The line crosses the yz plane where x=0

5=2μμ=52

Again y=μ(1b)+1=172

52(1b)+1=172

52(1b)=1721=152

1b=3

b=4

Again z=μ(a1)+a=132

52(a1)+a=132

52a52+a=132

32a52=132

32a=132+52

32a=9

a=9×23=6

a=6

(b)x52=y11b=zaa1=μ(say)

The line crosses the zx plane where y=0

11b=μ

Again b1=1μ

b=μ+1μ

Again x52=μ

x5=2μ

2μ+5=173

2μ=1735=17153=23

μ=13

Again zaa1=μ

za=μ(a1)

z=a+μ(a1)

a+13(a1)=73

a+a313=73

4a3=7+13

4a3=83

4a=8 or a=2

(c)x52=y11b=zaa1=μ(say)

The line crosses the xy plane where z=0

aa1=μ

μ=a1a

Again x52=μ

x=2μ+5

2μ+5=1

2μ=15=4

μ=2

Again μ=a1a

a1a=2

a=2+2a

a2a=2

a=2

Again y11b=2

y1=2+2b

y=2+2b+1

1+2b=1

2b=2

b=1

(d)The equation of a line passing through two points A(x1,y1,z1) and B(x2,y2,z2) is
xx1x2x1=yy1y2y1=zz1z2z1

Given that the line passed through the points (5,1,a) and (3,b,1) where x1=5,y1=1,z1=a and x2=3,y2=b,z2=1

So the equation of the line is

x535=y1b1=za1a

x52=y1b1=za1a=k for kR

So,x5=2k,yb=k(b1),za=k(1a)

x=2k+5,y=k(b1)+b,z=k(1a)+a ........(1)

Let (1,1,4) be the coordinates of the point where the line crosses the plane x+y+z+2=0

x=2k+5=1,2k=15=4k=2

y=k(b1)+b=12(b1)+b=1

2b2+b=1

3b=3b=1

z=k(1a)+a=4

2(1a)+a=4

22a+a=4
2a+a=42
a=6
a=6

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
What Is an Acid and a Base?
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon