(a)x−52=y−11−b=z−aa−1=μ(say)
The line crosses the yz plane where x=0
⇒−5=2μ∴μ=−52
Again y=μ(1−b)+1=172
⇒−52(1−b)+1=172
⇒−−52(1−b)=172−1=152
⇒1−b=3
∴b=4
Again z=μ(a−1)+a=−132
⇒−52(a−1)+a=−132
⇒−52a−52+a=−132
⇒−32a−52=−132
⇒−32a=−132+52
⇒−32a=−9
⇒a=−9×−23=6
∴a=6
(b)x−52=y−11−b=z−aa−1=μ(say)
The line crosses the zx plane where y=0
⇒−11−b=μ
Again b−1=1μ
⇒b=μ+1μ
Again x−52=μ
⇒x−5=2μ
⇒2μ+5=173
⇒2μ=173−5=17−153=23
∴μ=13
Again z−aa−1=μ
⇒z−a=μ(a−1)
⇒z=a+μ(a−1)
⇒a+13(a−1)=73
⇒a+a3−13=73
⇒4a3=7+13
⇒4a3=83
∴4a=8 or a=2
(c)x−52=y−11−b=z−aa−1=μ(say)
The line crosses the xy plane where z=0
⇒−aa−1=μ
⇒μ=a1−a
Again x−52=μ
⇒x=2μ+5
⇒2μ+5=1
⇒2μ=1−5=−4
⇒μ=−2
Again ⇒μ=a1−a
⇒a1−a=−2
⇒a=−2+2a
⇒a−2a=−2
⇒a=2
Again y−11−b=−2
⇒y−1=−2+2b
⇒y=−2+2b+1
⇒−1+2b=1
⇒2b=2
∴b=1
(d)The equation of a line passing through two points A(x1,y1,z1) and B(x2,y2,z2) is
x−x1x2−x1=y−y1y2−y1=z−z1z2−z1
Given that the line passed through the points (5,1,a) and (3,b,1) where x1=5,y1=1,z1=a and x2=3,y2=b,z2=1
So the equation of the line is
x−53−5=y−1b−1=z−a1−a
⇒x−5−2=y−1b−1=z−a1−a=k for k∈R
So,x−5=−2k,y−b=k(b−1),z−a=k(1−a)
∴x=−2k+5,y=k(b−1)+b,z=k(1−a)+a ........(1)
Let (1,1,−4) be the coordinates of the point where the line crosses the plane x+y+z+2=0
⇒x=−2k+5=1,⇒−2k=1−5=−4∴k=2
⇒y=k(b−1)+b=1⇒2(b−1)+b=1
⇒2b−2+b=1
⇒3b=3∴b=1
⇒z=k(1−a)+a=−4
⇒2(1−a)+a=−4
⇒2−2a+a=−4
⇒−2a+a=−4−2
⇒−a=−6
∴a=6