Let the end points be P(x1,x2), Q(x2,y2)
Let AB=2k then PA=BQ=k
⇒PAAB=k2k=12 and ABBQ=2kk=21
[1]
A(6,3) is dividing line segment PB internally in the ratio 1 : 2.
Using section formula for internal divison i.e.,
(x,y)=(mx2+nx1m+n,my2+ny1m+n)
⇒(6,3)=((1)(−1)+(2)(x1)1+2,(1)(−4)+(2)(y1)1+2)⇒(6,3)=(−1+2x13,−4+2y13)⇒6=−1+2x13 and 3=−4+2y13⇒2x1=19 and 2y1=13⇒x1=192 and y1=132
Hence, the coordinates of end point P are (192,132)
[2]
B(-1,-4) is dividing line segment AQ internally in the ratio 2 : 1.
Again by using section formula, we can write as
⇒(−1,−4)=((2)(x2)+(1)(6)2+1,(2)(y2)+(1)(3)2+1)⇒(−1,−4)=(2x2+63,2y2+33)⇒−1=2x2+63 and −4=2y2+33⇒2x2=−9 and 2y2=−15⇒x2=−92 and y2=−152
Hence, the coordinates of another end point Q are (−92,−152)
[2]