The line segment joining the points (3, -4) and (1, 2) is trisected at the points P and Q. If the coordinates of P and Q are (p, -2) and (5/3, q) respectively then the value of p and q is
Suppose Points P and Q trisect the line segment joining the pointsA(3,−4) and B(1,2)
This means, P divides AB in the ratio 1:2 and Q divides it in the ratio 2:1
Substituting (x1,y1)=(3,−4) and (x2,y2)=(1,2) and m=1,n=2 in the section formula, we get the point P =(1(1)+2(3)1+2,1(2)+2(−4)1+2)=(73,−2)
Given. P(p,−2)=(73,−2)
=>p=73
Substituting (x1,y1)=(3,−4) and (x2,y2)=(1,2) and m=2,n=1 in the section formula, we get the point Q =(2(1)+1(3)2+1,2(2)+1(−4)2+1)=(53,0)
Given. Q(53,0)=(53,q)
=>q=0